
PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Introduction
Modern C++ provides many powerful

features that aim to make code more reus-
able and reliable, but in many cases, due to
its UNIX roots, these features conflict with
equally important features of commercial
quality MacOS code, such as toolbox
callbacks, multi-threading and asynchro-
nous I/O. C++ Exception Handling is
definitely an example of this.

What are exceptions?
Exception handling is a formal mecha-

nism for reporting and handling errors
which separates the error handling code
from the normal execution path . If you are
unfamiliar with how C++ exceptions work,
you may want to check out Chapter 14 of
"The C++ Programming Language" by Bjarne
Stroustrup or any of the other excellent
texts on the topic.

Why are exceptions necessary?

"Exceptions cannot be
ignored" - Scott Meyers

One of the problems in designing
reusable code is deciding how to communi-
cate an error that occurs deep within a
library function back to someone who can
handle it. There are several conventional
ways for library code to report an error,
including:

• Terminate the program
• Return an error value
• Set a global error flag
• Call an error handling function
• Perform a non-local goto (longjmp)

Let's look at each in detail:

Terminating the program
While unconditionally terminating a

program as the result of an error in input
may be considered acceptable traditional
UNIX programs, it is generally not a good
idea in an application meant for use by
human beings.

Returning an error value
Returning an error or setting a flag is

somewhat better, but these kind of error
results are often ignored, either because the
programmer was lazy or because a function
that returns an error is called by another
which has no way to report it. Both of these
methods are also limited in the amount of
information they can return. Further, return
values must be meticulously passed back
up the calling stack, and global flags are
inherently unsafe in a threaded environ-
ment.

Calling an error handler
Calling an error handler function is

reliable, but while the function may be able
to log the error, it must still resort to one of
the other mechanisms to handle or recover
from the error.

Using C++ Exceptions
in Commercial Quality MacOS Code

Steve Sisak <sgs@codewell.com>

This paper describes some techniques for using C++ Exceptions in commercial quality MacOS
code, including issues related to toolbox callbacks, library boundaries, AppleEvents, and multi-
threading.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Unwinding the Stack
So we're left with non-local goto,

which is basically how exceptions are im-
plemented—except with help from the
compiler. C++ exceptions extend the
setjmp/longjmp library functions com-
monly used by C programs by
guaranteeing that local variables in regis-
ters are handled properly and destructors
for any local objects on the stack are called
as the stack unwinds.

Because this technique does not rely on
an explicit action by the programmer to
propagate errors up the call stack, excep-
tions are always propagated unless the
programmer takes an explicit action to
prevent it. Also, because an exception is an
object, it is possible for the library devel-
oper to return far more information just an
error code and to add information without
modifying client code.

What's wrong with C++ exceptions?
In a nutshell: lack of standardization.
Like many aspects of C and C++, the

implementation of exceptions has been left
as an implementation detail to be defined
by compiler vendors as they see fit. As a
result, it is never safe to throw a C++ excep-
tion from a library that might be used by
code compiled with a different compiler (or
a different version of the same compiler, or
even the same version of a compiler with
different compile options).

As a result of this:
• Exceptions cannot be thrown out of a

library.
• Exceptions cannot be thrown out of a

toolbox callback.
• Exceptions cannot be thrown out of a

thread.

Each of these cases fail in subtly differ-
ent ways:

Throwing out of a library
In the first case, there is no guarantee

that both compilers use compatible repre-
sentations for exceptions—the C++
standard does not define a format for ex-
ceptions that is supported across multiple
compilers.

Exceptions are objects and there is no
standard representation for C++ objects that
is enforced across compilers. This is also
why it's not feasible to export C++ classes
from a shared library.

IBM's System Object Model (SOM),
used in OpenDoc and Apple's Contextual
Menu Manager, solves this problem for
objects quite robustly (it is even possible to
mix objects and classes implemented in
different languages like C++ and
SmallTalk), but there are still issues which
would require a "System Exception Model"
as well.

As a platform vendor, Apple could
have saved us a lot of work here by specify-
ing an exception model that all compiler
vendors would agree to implement. If fact it
appears that they began to implement an
Exceptions Manager as part of the PowerPC
ABI but didn't finish it—so we're stuck with
the current state of incompatibility.

Throwing from a toolbox callback
Many MacOS routines use allow the

programmer to specify callback routines
which will be called by the toolbox during
lengthy operations or to give the program-
mer more control than could be encoded on
routine parameters. Unfortunately, it is not
possible to throw an error from a callback
and catch it in the code that called the
original toolbox routine.

This is because there is no way for the
toolbox clean up any resources that may
have been allocated by the toolbox before
calling the callback. In this case it is neces-
sary to save off the exception data, return
an error to the toolbox, and then re-throw
the exception when the toolbox routine
returns to its caller. But, C++ provides no

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

supported way to save off the exception
currently being thrown and RTTI does not
provide enough access to extract all data
from an object of unknown type, so again,
we must roll our own.

A few toolbox managers provide for
error callback functions which are not
required to return. While it should be possi-
ble to throw an exception from one of these
callbacks, there are issues that you should
be aware of. Specifically, some compilers
implement so-called "zero-overhead" excep-
tions which use elaborate schemes of tables
and tracing up the stack to restore program
state without needing to explicitly save
state at the beginning of a try block. This
code often gets confused by having stack
frames in the calling sequence that the
compiler did not generate causing it to call
terminate() on your behalf. (CodeWarrior's
exceptions code also does this if you try to
step over a throw from Jasik's Debugger --
you can work around this by installing an
empty terminate() handler)

Throwing exceptions from a thread
C and C++ have no notion of threading

or accommodation for it . For instance, the
C++ standard allows you to install a han-
dler to be called if an exception is thrown
and would not be caught, but you can only
install one such handler per application and
it is technically illegal for this routine to
return to its caller so there is no easy way to
insure that an uncaught C++ exception will
terminate only the thread it was thrown
from rather than the entire program. (It is
possible with globals and custom thread
switching routines, but tricky to imple-
ment.)

Interactions between threads and the
runtime can also rear up and bite develop-
ers in even more interesting and subtle
ways: for instance, in earlier versions of
CodeWarrior's runtime, the exception han-
dler stack was kept in a linked list, the head
of which was in a global variable. If excep-
tions were mixed with threads and the

programmer did not add code to explicitly
manage this compiler-generated global, the
exception stacks of multiple threads would
become intermingled, resulting in Real Bad
Things™ happening if anyone actually
threw an exception.

What we need is a standard way to
package an exception so it can be passed
across all of these boundaries and handled
or re-thrown without losing information.

As any Real Programmer™ knows,
good Macintosh programs should be
scriptable so that your users can do stuff
the programmer didn't think of, and record-
able, so that users don't have to have
intimate knowledge of AppleScript to
record some actions, clean up the result and
save it off for future use.

You may also know that if you want to
write a scriptable and recordable applica-
tion and you're starting from scratch, the
easiest way to do it is to write a "factored"
application — where the application is split
into user interface and a server which com-
municate with AppleEvents.

In a past life, I've written about how
using AppleEvents is a convenient way to
make your application multi-threaded by
using the AppleEvent to pass data from the
user interface to a server thread. [MacTech
Dec '94] Further, you may know that the
AppleEvent manager provides a data struc-
ture that can hold an arbitrary collection of
data (AERecord).

What you may not know (thanks to the
fact that it's relatively hidden in the
AppleScript release notes, rather than in
Inside Macintosh or a Tech Note) is that
AppleScript provides a relatively robust
error reporting mechanism in the form of a
set of optional parameters in the reply of an
AppleEvent which can specify, among other
things, the error code, an explanatory
string, the (AEOM) object that caused the
error, and a bunch of other stuff.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Putting this all together, if we define a
C++ exception class that can export itself to
an AERecord, we can both return extremely
explicit error information to a user of
AppleScript (or any OSA language) and
provide a standard format for exporting
exceptions across a library boundary . And
since an AERecord can contain an arbitrary
amount of data in any format, the program-
mer is free to include any information he or
she wants in the exception. Anything the
recipient doesn't understand will be ig-
nored.

Implementation Details
Following are some excerpts from an

exception class and support code which do
just this. Full source for a simple program
using this code is provided on the confer-
ence CD. The exception mechanism is
actually implemented as a pair of classes:
Exception and LocationInCode and a series
of macros which provide a reasonably
efficient mechanism for reporting exactly
where an error occurred and returning this
information in the reply to an AppleEvent.

Using this mechanism, it is not only
possible to throw an error across library
boundaries, but also between processes or
even machines.

Detecting and Throwing Errors
The implementation of the Exception

classes is divided between two source files:
Exception.cp and LocationInCode.cp. The
class Exception is the abstract representa-
tion of an exception. It has 2 subclasses:
StdException and SilentException.

If you look at these two files, you'll
notice that most of the functions that are
involved in failure handling are imple-
mented as macros in Exception.h which
evaluate to methods of another class,
LocationInCode — for instance, FailOSErr()
is implemented as:

#define FailOSErr
GetLocationInCode().FailOSErr

#define GetLocationInCode()
LocationInCode(__LINE__, __FILE__)

class LocationInCode
{

LocationInCode(long line,
const char* file) ...

void Throw(OSStatus err);

inline void FailOSErr(OSErr err) const
{

if (err != noErr)
{

// CW Seems not to be sign extending w/o cast
Throw((OSStatus) err);

}
}

}

So that the expression:

FailOSErr(MyFunc());

Evaluates to:

LocationInCode(__LINE__,
__FILE__).FailOSErr(MyFunc());

While this seems needlessly complex,
there is a good reason for it involving
tradeoffs between speed, code size, and
some "features" of the C++ specification.

Specifically, the obvious way to imple-
ment FailOSErr() is:

#define FailOSErr(err) if (err) Throw(err)

The problem here is that the macro
FailOSErr() evaluates its argument twice.
This means that, in the case of an error,
MyFunc() will be called twice — clearly not
what we want.

Here is one place that C++ can help us
out — we can implement FailOSErr() as an
inline function:

inline void FailOSErr(err)
{

if (err != noErr)
{

Throw(err, __LINE__, __FILE__);
}

}

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Since C++ inline functions are guaran-
teed to evaluate their arguments exactly
once, this solves our problem. Further, it
makes it possible to have overloaded ver-
sions of FailOSErr which take different
arguments, for instance a string to pass to
the user, so you can write:

FailOSErr(MyFunc(), "Some Error message")

The problem is that, once you imple-
ment this and try to access the file and line
information, you will discover that, thanks
to the way __FILE__ and __LINE__ are
defined, all errors are reported as occurring
in Exception.h — which is clearly less than
useful. You would think that the C++ stand-
ards committee would have updated the
way that these macros work or provided a
more robust mechanism for reporting the
location of an error in code, but they didn't.

The solution presented here is a com-
promise. By instantiating the
LocationInCode class from a macro, we
insure that __FILE__ and __LINE__ evalu-
ate to a useful location in the user's code,
rather than the exceptions library. Also, by
using a class, we can reduce code size by
allowing the methods of TLocationInCode
to call each other without losing the actual
location of the error.

An added benefit of this approach is
that, in the future, we could replace the
implementation of LocationInCode with
one that used MacsBug symbols or
traceback tables in the code instead of
relying on the compiler macros.

Also, note that FailOSErr() and the
constructor for LocationInCode are de-
clared inline to maximize speed, but then
call an out-of-line function (Throw) to
minimize code size in the failure case.

At any point in handling an error you
can add information to an Exception by
calling Exception::PutErrorParamPtr or
Exception::PutErrorParamDesc. For in-
stance if you were in an AppleEvent
handler and wanted to set the offending

object displayed to the user, you could
write:

try
{

// whatever
}
catch (Exception& exc)
{

exc.PutErrorParamDesc(
kAEOffendingObject, whatever, false);

throw;
}

These routines also take a parameter to
tell whether to overwrite data already in
the record -- this is useful to insure that the
first error that occurred is the on reported
to the user.

Insuring Errors are Caught
Because it isn't safe to throw C++

exceptions across a library boundary, we
need a mechanism to insure that all errors
are trapped and properly reported. Unfor-
tunately, unlike Object Pascal, we can't just
call CatchFailures() to set up a handler —
the code which might fail must be called
from within a try block.

Also, because C++ effectively requires
catch blocks to switch off the class of the
object thrown and doesn't support the
concept of 'finally' like Java, this master
exception handler can end up containing
quite a lot of duplicated code.

In order to minimize code size, the
static method
Exception::vStandardizeExceptions() pro-
vides a way to have a function called from
within a block that will catch all errors and
convert them to a subclass of Exception. If
you plan to support other exception classes,
such as the ones in the C++ standard li-
brary, you would modify this function to do
the right thing.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

OSStatus Exception::vStandardizeExceptions(
VAProc proc, va_list arg)

{
StdException exc(GetLocationInCode());

try // Call the proc
{

return (*proc)(arg);
}
catch (Exception& err)

// Exceptions are OK
{

throw /*err*/;
}
catch (char* msg)
{

exc.PutErrorParamPtr(keyErrorString,
typeChar, msg, strlen(msg));

}
catch (long num)
{

exc.SetStatus(num);
}
catch (...)
{
}

if (LogExceptions())
{

exc.Log();
}

exc.AboutToThrow();

throw exc;

return 0;
}

There are several other convenience
routines, all of which call through
Exception::vStandardizeExceptions(), which
capture all exceptions and convert them to
an OSErr or write them into an AppleEvent.
For instance the following can be used by
an AppleEvent handler to catch all errors
and return them in the event:

OSErr Exception::CatchAEErrors(
AppleEvent* event, VAProc proc, ...)

{
va_list arg; va_start(arg, proc);

OSStatus status;

try
{

status = vStandardizeExceptions(
proc, arg);

}
catch (Exception& exc)
{

status = exc.GetOSErr();

if (event && event->dataHandle != nil)
{

if (status != errAEEventNotHandled)
{

// AppleScript has an undocumented "feature"
// where if we put an error parameter in an
// unhandled event, it reports an error rather
// than trying the system handlers.
GetLocationInCode().LogIfErr(

exc.GetAEParams(*event, false));
}

}
}

va_end(arg);

if (status <= SHRT_MAX && status >=
SHRT_MIN)

{
return (OSErr) status;

}
else
{

return eGeneralErr;
}

}

This pair of functions report all errors
to the user. (The Exceptions library allows
the programmer to install a callback to
report exceptions to the user. Note that here
we use vStandardizeExceptions to insure
that all exceptions are converted to a sub-
class of Exception())

static OSStatus report_exception(
va_list arg)

{
VA_ARG(Exception*, exc, arg);

exc->Report();

return 0;
}

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

void Exception::ReportExceptions(
VAProc proc, ...)

{
va_list arg; va_start(arg, proc);

try
{

GetLocationInCode().FailOSStatus(
vStandardizeExceptions(proc, arg));

va_end(arg);
}
catch (Exception& exc)
{

va_end(arg);

try
{

StandardizeExceptions(
report_exception, &exc);

}
catch(Exception& exc1)
{

exc1.Log();
// don't throw errors in reporting

}
}

}

Conclusion
Exception handling is useful and prac-

tically required in robust code. C++
exceptions have a number of limitations
which you must be aware of when you are
developing code using operating system
features not supported by the language.
However, using the techniques described
above, these limitations can be overcome.

Bibliography
[1] Bjarne Strousttrup, "The C++

Programming Language" (Third
Edition), Addison-Wesley, 1997, ISBN
2-201-88954-4

[2] Scott Meyers, "Effective C++" (Second
Edition), Addison-Wesley, 1997, ISBN
0-201-92488-9

[3] Scott Meyers, "More Effective C++",
Addison-Wesley, 1996, ISBN 0-201-
63371-X

[4] P.J. Plauger, "The Draft Standard C++
Library", Prentis-Hall, 1995, ISBN 0-13-
117003-1

[5] James O. Coplien, "Advanced C++
Programming Styles and Idioms",
Addison-Wesley, 1992, ISBN 0-201-
54855-0

